
1605

0022-4715/04/0600-1605/0 © 2004 Plenum Publishing Corporation

Journal of Statistical Physics, Vol. 115, Nos. 5/6, June 2004 (© 2004)

Pure Point Spectrum for Two-Level Systems in a
Strong Quasi-Periodic Field

Guido Gentile1

1 Dipartimento di Matematica, Università di Roma Tre, Roma I-00146, Italy; e-mail:
gentile@mat.uniroma3.it

Received September 22, 2003; accepted December 29, 2003

We consider two-level atoms in a strong external quasi-periodic field with
Diophantine frequency vector. We show that if the field is an analytic function
with zero average, then for a large set of values of its frequency vector, charac-
terized by imposing infinitely many Diophantine conditions, the spectrum of the
quasi-energy operator is pure point, as in the case of nonzero average which was
already known in literature.
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1. INTRODUCTION

Consider a two-level system in a quasi-periodic external field. (10) The cor-
responding Hamiltonian is given by

H=es3 − f(t) s1, (1.1)

where s1, s2, s3 are the Pauli matrices and f(t) is assumed to be a real
analytic quasi-periodic function with frequency (or rotation) vector w ¥ Rd;
the real parameter e measures half the spacing between the unperturbed
energy levels.

If we write

f(t)= C
n ¥ Z

d
e in · wtfn, fn=f−n, (1.2)



with the bar denoting complex conjugation, then the Hamiltonian (1.1) can
be seen as a function of h=wt; we shall write H=H(wt).

The model has been recently considered in refs. 5 and 11, where the
spectrum for the quasi-energy operator was studied. The latter is defined on
the extended Hilbert space H=C2 × L2(Td, m), with m=1/(2p)d dh1 · · · dhd,
as

K=−iw ·
“

“h
+H(h); (1.3)

see refs. 2 and 9.
References 5 and 11 explicitly deal with the case d=2, in the regimes,

respectively, of large e (small external field) and small e ( large external
field): in both papers the spectrum of the quasi-energy operator is shown to
be pure point for a=w1/w2 Diophantine and excluding a further small set
of resonant values. More precisley, ref. 11 shows that one can reduce the
case of small e to the case of large e solved in ref. 5, provided that the
average f0 of the external field is nonvanishing: this is accomplished by
performing a unitary transformation which casts the quasi-energy operator
into the same form as in the case of large e, but one needs f0 to be not
zero. Note that external fields with vanishing average represent sort of
a degenerate situation, as in such a case the levels of the reference free
system, obtained through the aforementioned unitary transformation, have
the same energy for e=0. So the case of e small and f0=0 is still left as an
open problem in literature.

The time-dependent Schrödinger equation for the Hamiltonian (1.1) is
given by

i
“

“t
k(t)=H(wt) k(t). (1.4)

In ref. 2 the solutions of Eq. (1.4) are shown to be expressible in terms of
any particular solution g of the generalized Riccati equation

dG
dt

− iG2 − 2if(t) G+ie2=0. (1.5)

In particular in ref. 2 it was found that quasi-periodic solutions of the gen-
eralized Riccati equation exist in the form of formal power series in e, but
such series were argued to be in general divergent. In ref. 8 it was proved
that for small e quasi-periodic solutions exist indeed, at least for values of e

belonging to a Cantor set centered around the origin.
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To come back to the original problem about the spectrum of the quasi-
energy operator is not so immediate, as one has to check some properties
of the solution of the generalized Riccati equation, which are not obvious
(see Section 7 in ref. 2; we shall come back to this in Section 3).

Furthermore the problem studied in refs. 2 and 8 differs from that
considered in refs. 5 and 11, as one fixes the frequencies w1,..., wd, with
d \ 1, and, by imposing a Diophantine condition on the rotation vector
(w1,..., wd, f0) if f0 ] 0 and on the rotation vector (w1,..., wd) if f0=0,
one finds quasi-periodic solutions by requesting further conditions on
the parameter e. But we can also consider the same problem as in refs. 5
and 11: for fixed e we find conditions on the rotation vectors, to be added
to the usual Diophantine one, in order to have quasi-periodic solutions.

The conclusions are summarized in the following result. For simplicity
we state the result only when one has f0=0, as this is the case which will
be considered later, but the proof immediately extends to any analytic
function f(t) in (1.5), without requesting any condition on its average. We
assume also the same nondegeneracy condition of the external field as in
ref. 8 (which corresponds to the condition of case (1) of Theorem 2.2 in
ref. 2), but very likely such a condition can be easily eliminated.

Theorem 1. Consider the generalized Riccati equation (1.5), with f
a real analytic quasi-periodic function of the form (1.2), with f0=0, and
let Dy(C0) be the set of vectors w ¥ Rd satisfying the Diophantine condition

|w · n| > C0 |n|−y
-n ¥ Zd 0{0}, (1.6)

with Diophantine constants C0 > 0 and y > d − 1. Assume that, by defining

Q(t)=exp 12i F
t

0
dtŒ f(tŒ)2= C

n ¥ Z
d

e in · wtQn, (1.7)

one has Q0 ] 0. There exists a positive constant e0 such that, for all |e| < e0

and for any ball V … Rd of Lebesgue measure 1, there are a positive con-
stant C0, a positive constant bV and a set We(V) … V 5 Dy(C0) of relative
Lebesgue measure

meas(We(V)) \ 1 − bVC0, (1.8)

such that for all w ¥ We(V) the generalized Riccati equation (1.5) admits a
particular solution of the form

g(t) — ḡ(t; e, w)=g̃(wt; e, w), (1.9)

with g̃(k; e, w) analytic and 2p-periodic in k.
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Note that the condition f0=0 is used to expand the function Q(t) as
in (1.7): for f0 ] 0, the rotation vector would be (w1,..., wd, f0); see refs. 2
and 8.

In the particular case in which one has f0=0 (which is the case left
out in literature), we show in Section 3 that it is possible to obtain infor-
mations about the spectrum of the corresponding quasi-energy operator:
we find that also in such a case, for a set of values w=(w1,..., wd) of large
relative measure, the spectrum is pure point. More precisely the following
statement can be made (covering also the cases known from the literature).

Theorem 2. Consider the quasi-energy operator K in (1.3), with
H=H(h) given by (1.1) and f a real analytic quasi-periodic function of
the form (1.2). Let Dy(C0) be defined as in Theorem 1. Assume that, by
defining Q(t) as in (1.7), one has Q0 ] 0. There exists a positive constant e0

such that, for all |e| < e0 and for any ball V … Rd of Lebesgue measure 1,
there are a positive constant C0, a positive constant bV and a set We(V) …

V 5 Dy(C0) of relative Lebesgue measure

meas(We(V)) \ 1 − bVC0, (1.10)

such that for all w ¥ We(V) the spectrum of K is pure point.

For f0 ] 0 the proof can be found in ref. 11. For f0=0 the proof is
carried out in Section 3; the set We(V) and the constant bV can be taken the
same as in Theorem 1.

Of course it would be interesting also to investigate systems with infi-
nite (possibly degenerate) levels in a quasi-periodic field. Partial results in
this direction have been obtained, for instance, in refs. 6 and 7, where the
case of weak periodic field has been studied, and in ref. 1, where quasi-
periodic fields has been considered for systems with infinetely many non-
degenerate eigenvalues growing fast enough. We note that the technical
difficulties arising in studying such problems are strongly related to those
characterizing the problem of finding periodic and quasi-periodic solutions
for Hamiltonian systems: the case of a finite number of levels is similar to
the case of elliptic lower-dimensional tori for finite-dimensional Hamiltonian
systems (and the case of two levels is analogous to the case in which there is
only one normal frequency), while the cases of systems with infinitely many
levels in a periodic or quasi-periodic field correspond, respectively, to the
cases of periodic or quasi-periodic solutions in Hamiltonian PDE systems.
In particular it is well known that, for the latter systems, the problem
of proving existence of quasi-periodic solutions is more difficult than that
of proving existence of periodic solutions. By pursuing further such an
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analogy the case of zero-average external field we consider in this paper
corresponds to the case of a system with degenerate free Hamiltonian, and
this requires perturbation theory in presence of degeneracies, as already
pointed out in ref. 11.

2. RESULTS ABOUT THE SOLUTIONS OF THE GENERALIZED

RICCATI EQUATION

To prove Theorem 1 we proceed as in ref. 8, where we studied the case
in which w=(w1,..., wd) is fixed and e is a parameter to be varied. As
in ref. 8 we write the solution of the generalized Riccati equation (1.5) as
G=ieQu, where

u=u(t; e, w)= C
.

k=0
ek C

n ¥ Z
d

e iw · ntu[k]
n (e, w) (2.1)

admits the renormalized tree expansion envisaged in Section 6 in ref. 8: we
refer there for notations and details. In fact note that the tree expansion
and the multiscale decomposition are carried out at fixed w and e, so that it
is not important if either we are supposing that w is fixed and e varies or
vice versa.

As we want to consider w as a parameter to be varied we shall write
g[n](w, n; e) and M[n](w, n; e) instead of g[n](w · n; e) and M[n](w · n; e) as in
ref. 8; in the same way we shall write M[n](w, n; e).

The condition Q0 ] 0 is imposed in order to show, by a first order
analysis, that the coefficients u[k]

n are formally well defined; again we refer
to ref. 8 (and ref. 2) for details.

The only real difference with respect to ref. 8, in the renormalized
expansion, is in the Diophantine conditions. For fixed e we assume that
one has

|iw · n −M[n](w, n; e)| \
C0

2 (n+1)/2 |n|y
-n ¥ Zd 0{0} and -n \ − 1,

(2.2)

with the same Diophantine constants C0 and y as in (1.6). We call We the
set of w for which the Diophantine conditions (2.2) are satisfied; for any
subset V … Rd we denote with We(V) the set We 5 V.

Note that the set We is contained inside the set Dy(C0) of Diophantine
vectors with Diophantine constants C0 and y, which corresponds to (2.2)
for n=−1 (when M[ − 1](w, n; e) is identically vanishing, see ref. 8).
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Suppose that e1 is such that the series

C
.

k=0
ek C

n ¥ Z
d

e iw · ntū (k)
n , ū (k)

n = C
h ¥ G

R
k, n

Val(h), (2.3)

obtained by replacing the propagators g[na] with G2na+1C−1
0 (for some

constant G), converges for |e| [ e1. In the following discussion we shall
consider values of e such that |e| < e0, with e0 ¥ (0, e1] small enough (how
small can be deduced from the discussion itself ).

For fixed e define recursively the sets W[n]
e as follows. Let us call

W[0]
e =Dy(C0), (2.4)

and, for n \ 1,

W[n]
e =3w ¥ W[n − 1]

e : |iw · n −M[n − 1](w, n; e)| >
C0

2 (n+1)/2 |n|y
4 ; (2.5)

finally define

We=3
.

n=0
W[n]

e = lim
n Q .

W[n]
e , (2.6)

and for any open subset V … Rd write W[n]
e (V)=W[n]

e 5 V.
Then Theorem 1 is a consequence of the following lemmata.

Lemma 1. Assume that the set We has nonzero measure and that for
all w ¥ We the functions M[p](w, x; e) are C1 in x and satisfy the bounds

|M[p](w, x; e)| [ D |e|, |“xM
[p](w, x; e)| [ D |e|, (2.7)

for some constant D and for all p < n. Then for any renormalized tree
h such that Val(h) ] 0 the number Nn(h) of lines on scale n satisfies the
bound

Nn(h) [ c2−n/(2y1) C
v ¥ B(h)

|nv |, (2.8)

for a suitable positive constant c.

Proof. One proceeds as in the proof of Lemma 1 of ref. 8, by
proving inductively on the order k of the renormalized trees the bound

Ng
n (h) [ max{0, 2 |n(h)| 2 (3 − n)/(2y1) − 1}, (2.9)
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where |n(h)| — ;v ¥ B(h) |nv | and Ng
n (h) is the number of lines in L(h) on scale

nŒ \ n. The changes with respect to ref. 8 are obvious, so that we omit
details. L

Lemma 2. For w ¥ We and for x such that g[n](w, x; e) ] 0, there
exist two constants D and DŒ such that the functions M[j](w, x; e) are
smooth functions of x and satisfy the bounds

|M[j](w, x; e)| [ D |e|, |“xM
[j](w, x; e)| [ D |e|,

|M[j](w, x; e) −M[j − 1](w, x; e)| [ D |e| e−DŒ2 j/y1,
(2.10)

for all 0 [ j [ n − 1.

Proof. The proof is by induction on j: again it can be carried out as
in the proof of Lemma 2 in ref. 8, and it yields the following steps. First
one proves that for all T ¥ SR

k, j contributing to M[j](w, x; e) through the
self-energy value

VT(w, x; e)=1 D
v ¥ E(T) 2 V(T)

Fv
21 D

a ¥ L(T)
g[na](w, na; e)2 (2.11)

with na=n0
a +x (and n0

a given by (7.15) in ref. 8), one must have

C
v ¥ B(T)

|nv | > 2 (j − 4)/(2y1). (2.12)

Hence one proves that, by denoting with NjŒ(T) the number of lines on
scale jŒ contained in T ¥ SR

k, j, one has

NjŒ(T) [ c2−jŒ/(2y1) C
v ¥ B(T)

|nv |; (2.13)

the proof makes use of an inductive application of Lemma 1 (see ref. 8 for
further details). Then the two inequalities (2.12) and (2.13) imply, for all
T ¥ SR

k, j,

|VT(w, x; e)| [ |e|k A1Ak
2e−A32 j/(2y1)

D
v ¥ B(T)

e−o |nv|/2, (2.14)

for suitable constants A1, A2, and A3.
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By inserting the bound (2.13) into the definition of M[j](w; x; e) we
obtain

|M[j](w, x; e) −M[j − 1](w, x; e)|

[ |M[j](w, x; e)| [ C
.

k=1
D1Dk

2 |e|k e−D32 j/(2y1)
,

|M[j](w, x; e)| [ C
j

i=0
|M[i](w, x; e)|

[ C
.

k=1
D1Dk

2 |e|k C
j

i=0
e−D32i/(2y1)

[ C
.

k=1
D21Dk

2 |e|k,

(2.15)

for suitable constants D1, D21, D2, and D3; this proves the first and third
bounds in (2.7).

Also the second bound in (2.7) can be proved as in ref. 8. L

Lemma 3. The functions M[n](w, n; e) are C1-extendible in the
sense of Whitney outside W[n − 1]

e , and for all w, wŒ ¥ W[n − 1]
e one has

M[n](wŒ, n; e) −M[n](w, n; e)=(wŒ − w) “wM
[n](w, n; e)+o(|e|2 |wŒ − w| |n|),

(2.16)

where “wM
[n](w, n; e) is the formal derivative with respect to w of

M[n](w, n; e), and it admits the bound

|“wM
[n](w, n; e)| [ C |e|2 |n|, (2.17)

for some positive constant C.

Proof. The proof is by induction on n, and it can be performed by
proceeding as in ref. 8, with the only difference that now w plays the role
of e. For all p \ 0 one has (see the last of (6.3) in ref. 8)

M[p](wŒ, n; e) − M[p](w, n; e)

= C
.

k=1
C

T ¥ S
R
k, p

ek 1 D
v ¥ E(T) 2 V(T)

Fv
2

×51 D
a ¥ L(T)

g[na](wŒ, na; e)2−1 D
a ¥ L(T)

g[na](w, na; e)26 . (2.18)

Let us call L(T) the set of lines in L(T) coming out from nodes in B(T).
We can order the |B(T)| − 1 lines in L(T) and construct a set of |B(T)|
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subsets L1(T),..., L |B(T)|(T) of L(T), with |Lj(T)|=j, in the following way.
Set L1(T)=”, L2(T)=a1, if a1 is any line of T connected to the line
coming out from T, and, if |B(T)| \ 3, inductively for 2 [ j [ |B(T)| − 1,
Lj+1(T)=Lj(T) 2 aj, where the line aj ¥ L(T)0Lj(T) is connected to
Lj(T). Then in (2.18) we have

1 D
a ¥ L(T)

g[na](wŒ, na; e)2−1 D
a ¥ L(T)

g[na](w, na; e)2

= C
|B(T)|

j=1

51 D
a ¥ Lj(T)

g[na](wŒ, na; e)2 (g[naj
](wŒ, naj

; e) − g[naj
](w, naj

; e))

× 1 D
a ¥ L(T)0(Lj(T) 2 aj)

g[na](w, na; e)26 , (2.19)

where, by defining

Xn(w, n; e)

=q0(|w · n|) · · · qn − 1(|iw · n −M[n − 2](w, n; e)|) qn(|iw · n −M[n − 1](w, n; e)|),

Yn(w, n; e)

=q0(|w · n|) · · · qn − 1(|iw · n −M[n − 2](w, n; e)|) kn(|iw · n −M[n − 1](w, n; e)|),

Xn, s(wŒ, w, n; e)

=q0(|wŒ · n|) · · · qs − 1(|iwŒ · n −M[s − 2](wŒ, n; e)|)

× (qs(|iwŒ · n −M[s − 1](wŒ, n; e)|) − qs(|iw · n −M[s − 1](w, n; e)|))

× qs+1(|iw · n −M[s](w, n; e)|) · · · qn(|iw · n −M[n − 1](w, n; e)|), s [ n,

Yn, s(wŒ, w, n; e)

=q0(|wŒ · n|) · · · qs − 1(|iwŒ · n −M[s − 2](wŒ, n; e)|)

× (qs(|iwŒ · n −M[s − 1](wŒ, n; e)|) − qs(|iw · n −M[s − 1](w, n; e)|))

× qs+1(|iw · n −M[s](w, n; e)|) · · · kn(|iw · n −M[n − 1](w, n; e)|), s < n,

Yn, n(wŒ, w, n; e)

=q0(|wŒ · n|) · · · qn − 1(|iwŒ · n −M[n − 2](wŒ, n; e)|)

× (kn(|iwŒ · n −M[n − 1](wŒ, n; e)|) − kn(|iw · n −M[n − 1](w, n; e)|)),
(2.20)
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and setting nj=naj
and nj=naj

, we obtain

g[nj](wŒ, nj; e) − g[nj](w, nj; e)

=−
[i(wŒ − w) · n − (M[nj − 1](wŒ, nj; e) −M[nj − 1](w, nj; e))]
(iwŒ · nj −M[nj − 1](wŒ, nj; e))(iw · nj −M[nj − 1](w, nj; e))

Ynj
(w, n; e)

+ C
nj

s=1

Ynj, s(wŒ, w, n; e)

iwŒ · nj −M[nj − 1](wŒ, nj; eŒ)
. (2.21)

In Xn, s(wŒ, w, n; e) and in Yn, s(wŒ, w, n; e), with s [ n, we can write
(with the obvious interpretation for Yn, n(wŒ, w, n; e))

qs(|iwŒ · n −M[s − 1](wŒ, n; e)|) − qs(|iw · n −M[s − 1](w, n; e)|)

=“qs(|iw · n −M[s − 1](w, n; e))

× (|iwŒ · n −M[s − 1](wŒ, n; e)| − |iw · n −M[s − 1](w, n; e)|), (2.22)

where “ denotes the derivative with respect to the argument (so that one
has |“qs(x)| [ 2 sC−1

0 X, for some positive constant X), and

||iwŒ · n −M[s − 1](wŒ, n; e)| − |iw · n −M[s − 1](w, n; e)||
[ |i(wŒ − w) · n − (M[s − 1](wŒ, n; e) −M[s − 1](w, n; e))|

[ |i(wŒ − w) · n − “wM
[s − 1](w, n; e)(wŒ − w)|+o(|e|2 |wŒ − w| |n|)

[ (1+C |e|2) |wŒ − w| |n|+o(|e|2 |wŒ − w| |n|), (2.23)

where the inductive hypotheses (2.16) and (2.17), with n replaced by p < n,
and the inclusion relations W[n]

e … W[p]
e , for p < n, have been used. There-

fore we can write

qs(|iwŒ · n −M[s − 1](wŒ, n; e)|) − qs(|iw · n −M[s − 1](w, n; e)|)

=Ks(w, n; e)(wŒ − w)+o(2sC−1
0 |wŒ − w| |n|), (2.24)

with the function Ks(w, n; e) admitting the bound |Ks(w, n; e)| [ 2sC−1
0 K |n|,

for a suitable positive constant K.
We can also write in (2.21), for w, wŒ ¥ W[n]

e and for nj [ n,

g[nj](wŒ, nj; e) − g[nj](w, nj; e)

=“w g[nj](w, nj; e)(wŒ − w)+o(22njC−2
0 |wŒ − w| |nj |), (2.25)
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where “w g[nj](w, nj; e) represents the formal derivative of g[nj](w, nj; e) with
respect to w, and it admits the bound

|“w g[nj](w, nj; e)| [ G122njC−2
0 |nj |, (2.26)

for some constant G1.
If Ynj

(wŒ, nj; e) ] 0 this follows from (2.21) and from the inductive
hypothesis, by using (2.16), with p < n instead of n, and (2.24) in order to
obtain the bound

|“w g[nj](w · nj; e)| [
1

C2
02−2(nj+1) (1+C |e|2) |n|+

1
C02−2(nj+1) C

nj

s=0
2 sC−1

0 K |n|

[ D22(nj+1)C−2
0 |n|, (2.27)

where D is a suitable positive constant.
If Ynj

(wŒ, nj; e)=0 then we have

g[nj](wŒ, nj; e) − g[nj](w, nj; e)=−g[nj](w, nj; e). (2.28)

By defining Dn(w, n; e)=iw · n −M[n − 1](w, n; e), for Dnj
(wŒ, nj ; e) \

Dnj
(w, nj; e) the relation (2.25) and the bound (2.26) easily follow again

from (2.21). For Dnj
(wŒ, nj; e) < Dnj

(w, nj; e), we can write, by the inductive
hypothesis,

Dnj
(wŒ, nj; e)=Dnj

(w, nj; e)

+(in − “wM
[nj − 1](w, nj; e))(wŒ − w)+o(|e|2 |wŒ − w| |nj |).

(2.29)

Then, if |wŒ − w| |nj | [ |Dnj
(w, nj; e)|/4, we can bound D−1

nj
(wŒ, nj; e) with

4D−1
nj

(w, nj; e), so that (2.25) and (2.26) follow immediately, while, if
|wŒ − w| |nj | > |Dnj

(w, nj; e)|/4, we can bound in (2.28)

|g[nj](w, nj; e)| [ |D−1
nj

(w, nj; e)|

[ 4 |D−2
nj

(w, nj; e)| |wŒ − w| |nj |

[ 4 22(nj+1)C−2
0 |wŒ − w| |nj |, (2.30)

hence (2.25) and (2.26) follow also in such a case.
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To obtain (2.16) we have to consider

M[n](wŒ, n; e) −M[n](w, n; e)

= C
n

p=0
Xp(w, n; e)(M[p](wŒ, n; e) − M[p](w, n; e))

+ C
n

p=0
C
p

s=0
Xp, s(wŒ, w, n; e) M[p](wŒ, n; e). (2.31)

We can insert (2.18) into (2.31) and express the last line of (2.18) through
(2.19), hence the difference of propagators (2.19) through (2.25), and we
find that (2.16) holds, provided it is true for n=0.

The validity of (2.16)—and (2.17)—for n=0 follows by explicitly cal-
culation by noting that in such a case we can still use the decompositions
(2.25) and (2.18), with the only difference that now all propagators are of
the form g[0](w, n; e)=k0(|w · n|)(iw · n)−1. Hence we have to consider

M[0](wŒ, n; e) −M[0](w, n; e)

=q0(|w · n|) 3 C
.

k=1
C

T ¥ S
R
k, 0

ek 1 D
v ¥ E(T) 2 V(T)

Fv
2

× C
|B(T)|

j=1

51 D
a ¥ Lj(T)

g[0](wŒ, na; e)2 (g[0](wŒ, naj
; e) − g[0](w, naj

; e))

×1 D
a ¥ L(T)0(Lj(T) 2 aj)

g[0](w, na; e)264

+(q0(|wŒ · n|) − q0(|w · n|)) M[0](wŒ, n; e), (2.32)

with

g[0](wŒ, naj
; e) − g[0](w, naj

; e)

=
k0(|wŒ · n|)

iwŒ · naj

−
k0(|w · n|)

iw · naj

=−
(wŒ − w) · naj

(iwŒ · naj
)(iw · naj

)
k0(|w · n|)+

k0(|wŒ · n|) − k0(|w · n|)
iwŒ · naj

, (2.33)

which is C1 extendible outside W[0]
e . Then the formal derivative of

M[0](w, n; e) with respect to w produces a sum of terms which are of the
form of some quantity which can be bounded by the square of the bound
holding for M[n](w · n; e) (simply because, as we have seen by reasoning as
in proving (2.25) and (2.26), the difference of propagators (2.33) in (2.32)
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can be bounded by a constant times the product of the bounds of the single
propagators) times |na |, where a is some line in L(T). So we can write
na=n0

a +san, with sa ¥ {0, 1}: the term with n0
a can be easily estimated

since the product of node factors in the self-energy value can be bounded
by a quantity containing an exponentially decaying factor e−o |na0

| (because
of the analyticity of f(t)), while the other one (when not vanishing) is just
of the form of a constant times |e|2 times |n|.

To show that the bound (2.17) holds also for n \ 1, we can reason
essentially in the same way, again by using the bounds (2.22) and (2.25)
which follow from the inductive hypothesis.

This concludes the proof. L

Lemma 4. For any ball V … Rd of Lebesgue measure 1, there is a
positive constant bV such that, for e0 small enough anf for |e| < e0, one has

meas(We(V)) \ 1 − bVC0, (2.34)

where meas denotes the Lebesgue measure.

Proof. Fix any ball V … Rd. Define

˛I[0]=”,

I[n]=W[n − 1]
e (V)0W[n]

e (V), for n \ 1;
(2.35)

note that I — 1.

n=0 I
[n]=Dy(C0) 5 V0We(V).

For all n \ 1 and for all n ¥ Zd 0{0} define

I[n](n)=3w ¥ W[n − 1]
e (V) : |iw · n −M[n − 1](w, n; e)| [

C0

2 (n+1)/2 |n|y
4 . (2.36)

For any n set w=an/|n|+b, with b · n=0: a is the component of
w along the direction n, while b is the orthogonal component, so that
w · n=a |n|.

Therefore one has to exclude from the set W[n − 1]
e (V) all the values

w=an/|n|+b in I[n](n), which gives a set of measure

F
I[n](n)

dw=F
I[n](n)

db da=F db F
1

−1
dt

da(t)
dt

, (2.37)

if a(t) is defined by

ia(t) |n| −M[n](a(t) n/|n|+b, n; e)=t
C0

2 (n+1)/2 |n|y
, (2.38)
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where the Whitney extension of M[n](w, n; e) given by Lemma 3 has to be
used.

By deriving (2.38) with respect to t we obtain

da(t)
dt

|n| 1 i −
n

|n|2 “wM
[n](a(t) n/|n|+b, n; e)2=

C0

2 (n+1)/2 |n|y
, (2.39)

so that, by using (2.17), we can bound

:da(t)
dt

: [ 1
1 − C |e|2

C0

2 (n+1)/2 |n|y+1 [
2C0

2 (n+1)/2 |n|y+1 , (2.40)

which, inserted into (2.33), gives

F
I[n](n)

dw [ CV
C0

2 (n+1)/2 |n|y+1 , (2.41)

for some constant CV.
This has to be done for all n ¥ Zd 0{0}, so that we have to exclude

from W[n − 1]
e (V) a set

I[n]= 0
n ¥ Z

d
0{0}

I[n](n) (2.42)

of measure bounded by

meas(I[n]) [ C
n ¥ Z

d
0{0}

meas(I[n](n))

[ CV C
n ¥ Z

d
0{0}

C0

2 (n+1)/2 |n|y+1 [ BV
C0

2 (n+1)/2 , (2.43)

with BV implicitly defined, as the sum is convergent for y > d − 1.
We are left with the sum over n to perform, but this can be done

trivially, and it gives

meas(I) [ C
.

n=0
meas(I[n]) [ BVC0 C

.

n=0

1
2 (n+1)/y

[ bVC0, (2.44)

for some positive constant bV. L

Lemmata 1 and 2 prove that there exists e0 > 0 such that the series (2.1)
converges for all |e| < e0 provided that one has w ¥ We. In fact by using
Lemma 1 one proves that the functions M[n](w, n; w) admit the bounds
stated in Lemma 2. This in turn implies that the bound (2.8) on the number
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of lines on scale n holds for all n \ 0, so that one can reason as in ref. 8 to
conclude that the coefficients u[k]

n admit the bound Cke−oŒ |n| for some posi-
tive constants C and oŒ: then convergence follows. Lemmata 3 and 4 prove
that the set We is not empty: more precisely for any ball V … Rd (of not too
small Lebesgue measure) the intersection We 5 V has large relative measure
provided that the Diophantine constant C0 is small enough.

3. RESULTS ABOUT THE SPECTRUM OF THE QUASI-ENERGY

OPERATOR

If the spectrum of the quasi-energy operator (1.3) is pure point, then
any solution of the Schrödinger equation (1.4) has to be a linear combina-
tion of harmonics

exp(i(w · n+lm) t), m=1, 2, n ¥ Z2, (3.1)

for suitable l1 and l2; see ref. 5.
To deduce (3.1) from the results of Section 2 requires some considera-

tions, as any particular quasi-periodic solution g(t) of the generalized
Riccati equation (1.5) and the solution k(t) of the Schrödinger equation
(1.4) are related according to Theorem 2.1 of ref. 2; see also ref. 3. So one
has

k(t)=e ips2/4U(t) e−ips2/4k(0), (3.2)

with k(0) ¥ C2 and the unitary transformation U(t) given by formula (2.3)
of ref. 2:

U(t)=RR(t)(1+ig(0) S(t)) − ieR(t) S(t)

− ieR(t) S(t) R(t)(1 − ig(0) S(t))
S , (3.3)

where

R(t)=exp 1− i F
t

0
dtŒ(f(tŒ)+g(tŒ))2 , S(t)=F

t

0
dtŒ R−2(tŒ), (3.4)

and the bar denotes complex conjugation as in (1.2). In particular, in order
to have a quasi-periodic solution one needs not only that g(t) is quasi-
periodic, but also, as remarked in ref. 2, that it satisfies some properties,
which would be difficult to prove directly from the perturbative expansion
of g(t), but which follow automatically from the unitarity of U(t), namely
one has

g0 ¥ R, (R−2)0=0. (3.5)
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Even if such properties are satisfied, in general it is not obvious that k(t)
can be written as a linear combination of the functions (3.1). However
there is a case in which this can be easily checked, and it is exactly the case
of an external field with zero average which was left unsolved in literature
(as it represents a degenerate, hence more complicated, situation in the direct
approach of ref. 11), so we think that it can be of interest to discuss it explicitly.

If f0=0 then the solution g(t) of the generalized Riccati equation
(1.5) is a quasi-periodic function depending on time through the quantity
wt (with the notations in refs. 2 and 8 one has dŒ=d and w

¯
=w), so that, if

the conditions (3.5) are satisfied, it is straightforward to check that k(t) can
be written as a linear combination of the functions (3.1) with l1=−g0 and
l2=g0: this proves that the spectrum of the quasi-energy operator is pure
point, and it provides an explicit expansion for the eigenvalues.
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